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SUMMARY

This research program investigates boundary-layer receptivity in the leading-

edge region for bodies with blunt leading edges. Receptivity theory provides the link

between the unsteady disturbance environment in the free stream and the initial amp-

litudes of the instability waves in the boundary layer. This is a critical problem which

must be addressed in order to develop more accurate prediction methods for

boundary-layer transition. The first phase of this project examines the effects of

leading-edge bluntness and aerodynamic loading for low Math number flows. In the

second phase of the project, the investigation will be extended to supersonic Maeh

numbers. Singular perturbation techniques are utilized to develop an asymptotic

theory for high Reynolds numbers. In a parallel, closely eeordinated effort, the

author is collaborating with Dr. T.B. Gatski of NASA I.aRC in utilizing his Navier-

Stokes code for computations of leading-edge receptivity.

In this first year of the project, we have developed the asymptotic theory for

leading-edge receptivity in low Mach number flows. The case of a parabolic nose is
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considered, with S = _orn/Uoo = O(1). The asymptotic theory for the unsteady flow

utilizes the small parameter E = (wv/U_ z/6. In the outer region away from the body

surface, an inviscid solution holds. The viscous analysis in the boundary layer

involves two streamwise regions. In the region _ox/Uoo = O(1), the disturbances satisfy

the linearized, unsteady boundary-layer equation (LUBLE). Farther downstream

where oax/Uoo = O(e-2), an asymptotic form of the Orr-Sommerfeld equation (OSE)

applies. The inviscid solution in the outer region has been calculated, and the asymp-

totic eigenfunctions for the LUBLE have been derived and matched with the

Tollmien-Schlichting ('IS) wave of the OSE. This matching shows that the coefficient

C z of the first asymptotic eigenfunction of the LUBLE determines the amplitude of

the "IS wave. To complete the asymptotic analysis, the coefficient C z of the asymp-

totic eigenfunction must be determined from a numerical solution of the LUBLE. We

are presently addressing this task.

Substantial progress has also been made on the Navier-Stokes computations.

Analytical solutions for the steady and unsteady potential flow fields have been incor-

porated into Dr. Gatski's code, greatly expanding the types of free-stream distur-

bances that can be considered while also significantly reducing the computational

requirements. The time-stepping algorithm has been modified so that the potential

flow perturbations induced by the unsteady pressure field are directly introduced

throughout the computational domain, avoiding an artificial "numerical diffusion" of

these from the outer boundary. In addition, the start-up process has been modified

by introducing the transient Stokes wave solution into the downstream boundary con-

dition. These modifications have significantly improved the performance of the code,

and we anticipate that within a few months computational results will be available for

comparison with the asymptotic theory. This will be the first comparison of asymp-

totic and Naviei-LStokes results for leading-edge receptivity.
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PROGRESS REPORT

The accurate prediction of boundary-layer transition and the need to control

this phenomenon are becoming increasingly important in the development of

advanced aeronautical vehicles. These requirements have focused renewed attention

on the physics of the transition process. It was known for many years that boundary-

layer transition is significantly influenced by the free-stream disturbance environ-

ment. However, the physical mechanisms by which energy is transferred from the

long-wavelength, free-stream disturbances to the short-wavelength, instability waves

were not understood. This came to be known as the receptivity problem.

Recent work by Goldstein and extensions by the author and his students have

shown that the receptivity process takes place in regions of the boundary layer where

the mean flow exhibits rapid changes in the streamwise direction. This occurs (a)

near the body leading edge and (b) in any region farther downstream where some

local feature forces the boundary layer to adjust on a short streamwise length scale.

The rapid streamwise adjustment in these regions requires that nonparallel mean flow

effects be included at leading order, in contrast to the parallel flow or slowly diverg-

ing flow assumptions utilized in stability theory. The current status of research in

receptivity is summarized in several articles contained in Ref. 1.

Previous theoretical research in receptivity near leading edges has focused on

the Blasins boundary layer on a semi-infinite, zero-thickness plate. The motion has

been assumed to be incompressible and two-dimensional. Goldstein = utilized a high

Reynolds number asymptotic approach to develop a theoretical framework for leading

edge receptivity. The small parameter _ utilized in the analysis is defined by

= (o_v/U_X/e; note that ee is the frequency parameter F for classical stability theory,

which can also be interpreted as the inverse of a Reynolds number based on the con-
2

vective wavelength Uoo/ca of the unsteady motion.
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Two distinct streamwise regions arise in the asymptotic analysis. Near the

leading edge where oJx/Uoo = (9(1), the unsteady motion is governed by the linearized

unsteady boundary layer equation (LUBLE). In the second streamwise region farther

downstream where _x/Uoo ---O(c2), the unsteady motion is governed by the classical

large Reynolds number, small wavenumber approximation to the Orr-Sommerfeld

equation (OSE). The Tollmien-Schlichting (TS) wave in the latter region corresponds

to the triple deck structure of Smith 3. Goidstein examined the asymptotic matching

of these two regions, and showed that Lain and Rott's first asymptotic eigenfunction 4

for the LUBLE matches onto the "IS wave of the OSE. Thus, the first asymptotic

eigensolution of Lam and Rott is the precursor of the "IS wave, and the coefficient C 1

of this asymptotic eigensolution determines the amplitude of the "IS wave. Hence, we

call C 1 the "Receptivity Coefficient."

The available results for the Receptivity Coefficient are restricted to the low

Mach number, Blasius boundary layer on a semi-infinite, zero-thickness plate. The

first calculation of a Receptivity Coefficient was presented by Goldstein, Sockol and

Sanz 5 for the case of an acoustic wave propagating downstream parallel to the plate

surface. The author and Heinrich6, r utilized information on the analytic structure of

the solution to develop a much more accurate approach for calculation of the Recep-

tivity Coefficient. Using this improved method, they calculated Receptivity Coeffi-

cients for a wide range of free-stream disturbances including obliquely incident

acoustic waves, convected gusts (the linear representation of free-stream turbulence)

of various orientations, and a yon Karman vortex street passing above the plate

surface. The Receptivity Coefficients for obliquely incident acoustic waves were

found to be an order of magnitude larger than those for other free-stream distur-

bances. These large receptivity levels arise arise due to the strong diffraction field

produced by the interaction of an oblique acoustic wave with the plate leading edge.

t ' _:t " "2
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In order to obtain predictions of relevance to practical applications, it is essen=

tial that leading-edge bluntness be incorporated into the theory for leading edge

receptivity. All bodies of practical interest have a finite leading-edge radius rn,

which enters the receptivity problem through the nondimensional parameter S =

oJrn/Uoo. This parameter is typically O(I) or larger in aerodynamic applications, and

it may even be large enough in laboratory experiments to cause significant deviations

from the zero=thickness result. In the Receptivity Panel at the ICASE/LaRC

Workshop on Instability and Transition (see Ref. I), both the author and Morkovin

identified leading-edge thickness as an important area for future research.

A second disadvantage of the zero-thickness geometry is that the influence of

mean aerodynamic loading cannot be investigated, since any asymmetrical mean flow

component in the vicinity of the leading edge leads to boundary layer separation. It is

well known that aerodynamic loading significantly influences both the mean boundary

layer development and the stability of the boundary layer. Hence, it is reasonable to

anticipate that aerodynamic loading is an important parameter in the receptivity

problem as well. In fact, in his laboratory experiments Leehey s found that small

changes in the "angle of attack" of his plate produced dramatic changes in the recep-

tivity to acoustic waves. Thus, in order to obtain results which are relevant to practi-

cal applications, it is essential to incorporate both leading-edge bluntness and aerody=

namic loading in the receptivity theory.

The present research program extends the asymptotic theory for leading edge

receptivity to incorporate the effects of leading-edge bluntness, aerodynamic loading

and compressibility. In the first phase of the program, the effects of leading-edge

bluntness and aerodynamic loading are being investigated for the low Mach number

case. In the second phase of the program, the theory will be extended to high Mach

number flows. The low speed problem is viewed as an essential stepping stone in the

development of the theory, and also has relevance to the high Mach number case
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where a strong shock produces low speed flow near the nose of the body.

As an integral part of this research program, we are also collaborating with Dr.

T.B. Gatski of NASA LaRC in Navier-Stokes computations for leading-edge recep-

tivity. These computations are an important complement to the asymptotic theory,

which provides valuable information regarding the dominant physical mechanisms and

relevant scaling parameters, but may not provide sufficient quantitative accuracy for

parameter ranges of practical interest. In particular, the Navier-Stokes computations

allow finite Reynolds number effects to be assessed. The computations can also be

utilized to investigate nonlinear effects due to free-stream disturbances of finite amp-

litude.

For the low Math number study which forms the first phase of this research

project, we consider conventional airfoil shapes which have a parabolic leading edge.

The streamwise length scale for the leading-edge receptivity analysis is the convected

wavelength Uoo/aJ, which is generally small compared to the airfoil chord b. Hence, it

is only the airfoil characteristics near the leading edge which enter the analysis, and

the geometry can be restricted to a semi-infinite parabola with the nose radius rn of

the airfoil. For a symmetric airfoil at zero angle of attack, the flow past the leading

edge is symmetric. However, aerodynamic loading due to camber or a nonzero angle

of attack produces a flow asymmetry. In the local leading-edge region, this asymme-

try corresponds to a flow component around the leading edge from the pressure side

to the suction side. The application of the method of Matched Asymptotic Expan-

sions _ for a nose radius r,, small compared to the airfoil chord b shows that, in the

local leading-edge region, the complex potential for the inviscid mean flow has the

asymptotic expansion
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where z = x + iy. The first term corresponds to the symmetric component of the local

flow past the leading edge, while the second term is the asymmetrical component

produced by the airfoil camber and angle of attack. An expression for %ff in terms

of the airfoil angle of attack and camber distribution is given in Ref. I0. In our work

to date, we have concentrated on the case of leading-edge bluntness for a symmetric

mean flow (%ff = 0). The extension to include nonzero values of %/¢ is conceptually

straightforward and will be carried out later. Details of our progress on the Navier-

Stokes computations and on the asymptotic theory are discussed separately below.

Navier-Stokes Computations

In the first few months of the project, we focused on the collaboration with Dr.

Gatski in Navier-Stokes computations for leading-edge receptivity. Dr. Gatski's

code xx is well suited to the study of leading-edge receptivity, since it solves the

Navier-Stokes equations in parabolic coordinates. Hence, no discontinuities in the

geometry, grid generation functions, or related derivatives are present in the numeri-

cal approach. Receptivity is a sensitive phenomenon and such discontinuities could

easily lead to spurious "numerical sources" of receptivity.

The Navier-Stokes computation of the unsteady flow past a parabola is a diffi-

cult problem on which previous investigators have had only partial success. Murdock

attempted an incompressible, Navier-Stokes calculation of receptivity at the leading

edge of a parabola, and presented a preliminary report in a conference paper 12.

However, Murdock never published this work in archival form because his down-

stream boundary condition caused difficulties which he never satisfactorily resolved

(private communication, June 1990). Reed et a113 have presented incompressible

computations for geometries consisting of an elliptical nose attached to a flat plate.
c

Unfortunately, her results appear to be dominated by localized receptivity x4 at the
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junctionbetweenthe elliptical nose and the flat plate, and may also be contaminated

by "spurious sources" related to the numerical treatment of the abrupt discontinuity in

curvature at the junction between the elliptical nose and the flat plate.

Both Murdock and Reed introduced the flow unsteadiness by specifying a

uniform axial pulsation on the outer boundary of the computational domain far from

the body surface. This boundary condition is an attempt to model receptivity to a

parallel, plane acoustic wave in the limit M -, O. However, the author's previous

asymptotic studies have shown that it is oblique acoustic waves which are primarily

responsible for leading-edge receptivity at low Math numbers. The approaches of

Murdock and Reed are not easily modified to treat the case of obliquely incident

acoustic waves. In addition, even for the parallel plane wave case, the actual unsteady

flow far from the body consists of the superposition of an incident, plane acoustic

wave and a scattered, outgoing, cylindrical acoustic wave. Since the amplitude of the

scattered wave decays only as the square root of distance from the body nose, the

assumption of a uniform axial pulsation at a finite distance from the body is question-

able.

Our computational approach takes advantage of singular perturbation concepts

and has several advantages compared to the approaches utilized by Murdock and

Reed. In contrast to these authors, we utilize analytical solutions for the steady and

unsteady components of the potential flow outside the boundary layer. The singular

perturbation approach allows us to correctly account for the scattering of the incident

acoustic wave by the body surface, and to treat the important case of obliquely

incident acoustic waves. Furthermore, with our singular perturbation approach these

features can be captured without considering flow compressibility in the Navier-

Stokes computation. This is discussed in more detail in the following section. Finally,

in contrast to the approaches of Murdock and Reed, our computational domain can be

restricted to the viscous portion of the flow field. This significarltly decreases the
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computationaleffort and provides advantages relative to the accuracy and resolution

of the results.

Two additional modifications which we have introduced into the Navier-Stokes

code also merit discussion. The code is a velocity-vorticity formulation. The convec-

tion and diffusion of the vorticity field is calculated in the first half of the time step.

In the second half of the time step, an iterative solver is applied to the divergence and

curl relations in order to update the velocity field. In our early unsteady flow calcu-

lations, we experienced difficulties due to a gradual buildup of numerical errors

related to incomplete relaxation in the iterative solver. This difficulty could be sup-

pressed by significantly reducing the time step, but this resulted in prohibitive com-

putation times.

After some study, we realized that this difficulty was due to the way in which

time variations in the potential flow field were being introduced into the code. The

change in the inviscid slip velocity was being introduced through the outer boundary

condition in the second half of the time step, and in each iteration of the velocity

solver the adjustment in the potential flow field "diffused" inward only one grid level.

Thus, a large number of iterations were required to "numerically diffuse" the change

in the potential flow field. This characteristic of the numerical algorithm was incon-

sistent with the inherent physics of the problem, since adjustments to a potential flow

are instantaneously transmitted throughout the field via the unsteady pressure distri-

bution.

To more accurately model the physics of the problem, we modified the numer-

ical algorithm such that the change in the potential flow field was introduced

throughout the computational domain prior to applying the iterative solver in the

second half of the time step. This modification dramatically improved the behavior

of the algorithm. Much larger time steps can now be used with no indications of

numerical difficulties.
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After incorporating this change in the code, calculations were carried out over

time intervals corresponding to several periods of the unsteady motion. The results

obtained were in general very encouraging, but contained one feature which we view

with some skepticism. Instability waves appear to be originating near the downstream

boundary of the computational domain. It is possible that these instability waves are

being generated by Morkovin's mechanism of unsteady free-stream pressure gradients,

which could arise due to the interaction of free-stream acoustic waves with the curva-

ture of the surface. To investigate this possibility, we are currently performing calcu-

lations for the flat plate case, in which Morkovin's mechanism would not be operative.

However, in recent work is we have shown that the instability waves produced by

Morkovin's mechanism have exponentially small amplitudes whenever the length scale

of the free-stream pressure gradient is long compared to the instability wavelength.

Hence, it seems likely that another mechanism is producing these waves. In our

previous computations, we found that the solutions are fairly sensitive to the down-

stream boundary condition. Thus, we are also exploring the possibility that these

waves could be spuriously generated by the downstream boundary condition.

The asymptotic theory for leading-edge receptivity shows that the TS waves are

generated near the leading edge where oox/Uoo ffi O(1). Hence, in a transient problem

in which the unsteady motion is initiated at t = 0, "IS wave motion should appear first

in the upstream region. This TS wave motion should then gradually move down-

stream as the unsteady flow field evolves. Thus, in the early stages of the unsteady

flow development, the unsteady motion at the downstream boundary should simply

consist of the Stokes wave induced by the local unsteady potential flow.

In the computations described above, the time-harmonic motion sin_0t was

"switched on" at t = 0. However, we utilized the "steady-state" time-harmonic Stokes

wave solution in the downstream boundary condition. The "switch on" of the time-

harmonic Stokes problem has been investigated by Panton x6, who found that the tran-
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sientdied off in less than one period of the motion. However, we are concerned that

the initial inconsistency in the outflow boundary condition may produce a spurious

"numerical source" of receptivity. To investigate this issue, we are presently incorpo-

rating the transient Stokes solution into our downstream boundary condition.

The computational work described in this section is being closely coordinated

with the development of the asymptotic theory, which is described in the following

section.

Asymptotic Theory

We now discuss our progress on the asymptotic theory for leading=edge recep-

tivity. The asymptotic analysis requires a sophisticated understanding of applied

mathematics and fluid dynamics. Thus, in order to make timely progress on this

project, a Post Doctoral student is required. Paul Hammerton was selected from a

number of candidates for this Post Doctoral position. Hammerton received his Ph.D.

in 1990 from the University of Cambridge. His dissertation advisor was David

Crighton in the Department of Applied Mathematics and Theoretical Physics.

Hammerton accepted a two-year appointment at the University of Arizona, and

arrived at Arizona in early November. He is taking primary responsibility for

carrying out the detailed asymptotic analysis of the viscous motion, and has rapidly

come up to speed on the subject of boundary-layer receptivity.

Both the asymptotic theory and the Navier-Stokes computations rely on analyti-

cal solutions for the steady and unsteady components of the potential flow field.

Thus, this part of the analysis was developed by the author prior to Hammerton's

arrival in Arizona. The steady component of the potential flow field corresponds to

inviseid flow past a parabola and is well known. The unsteady component of the

potential flow field corresponds to scattering of a plane acoustic wave by a semi-
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infinite parabola in a low Mach number flow. We have analyzed this problem using

singular perturbation techniques.

It might at first appear that the acoustic scattering problem in the limit M --. 0

could be analyzed simply by assuming that the flow is incompressible. However, the

author and Heinrich 6 showed that acoustic scattering problems involving semi-infinite

bodies are singular in the limit M --* 0. Thus, the local flow field in the vicinity of

the leading edge cannot be calculated without also considering a global region in

which the acoustic wavelength ,_ is the appropriate length scale. For the semi-infinite

parabola with S = oJrn/Uoo = 0(1) and M = Uoo/c << 1, the parabola appears to be

very thin when viewed on the scale of the acoustic wavelength A = 2_rc/_o. Thus, the

leading order term of the global solution is the classical problem of diffraction by a

semi-infinite, zero-thickness plate. We utilize the Wiener-Hoof technique x7 to obtain

the leading term of the global solution in the form

Pac I- i eik(x cos¢ac - Y sin Oac)
_°(x'Y) = pc l k

O0

sinOacsgn(y) I exp(-_ ly[ - ix x) _,e-itatT _rv/_ -oo (,k+kcos0ac)_ d), . (2a)

Here (x,y) are dimensional coordinates centered at the focus of the parabola, Pac/PC is

the magnitude of the velocity fluctuation associated with the incident acoustic wave,

aac is the incidence angle of the acoustic wave measured with respect to the body axis,

and k = oJ/c is the acoustic wavenumber. For matching with the local region near the

leading edge, the asymptotic expansion of this solution as r = _/x z + y2 _.., 0 is

required. From Fourier transform theory, it is known that the behavior of the

integral in (2a) for small (x,y) is related to the behavior of the transform function for

large ,_. Thus, we find that the small argument expansion of _o(X,y) takes the form
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231_.d_l 4 __ 0sin v_ cos

+ COSOac rcosO + O(rS/Z)l e -i_ (2b)

= +BRe V_-i
pc oJ

+ CReE[_-i_-_] + ...]e 4°x (3a)

where Z = _(x + iy)/Uoo and A, B and C are undetermined coefficients. Expanding

(3a) for large Z and matching with (2b), the constants are determined as

23/2 eif/4 sin 0ac/2
A = -M,/ B = - v/_ _ and C = cOS0ac. (3b)

Physically, the function whose coefficient is B corresponds to an asymmetric,

unsteady potential flow around the nose of the parabola, while the function whose

coefficient is C corresponds to a symmetric, unsteady potential flow. For the case of

an incident plane wave parallel to the axis of the parabola (Oac= 0°), the coefficient B

vanishes and C is (9(1). This is the case modeled in the computations of Murdock and

Reed. In contrast, for the case of an obliquely incident acoustic wave, B = O(M'Z/z).

Thus, at low Math numbers, an oblique acoustic wave generates a strong asymmetric

flow around the leading edge. This asymmetric flow in turn produces a strong

of eigensolutions

where (r,0) is the polar form of (x,y).

In the local leading-edge region, the appropriate length scale is the nose radius

rn. The asymptotic analysis of the viscous motion utilizes coordinates nondimension-

alized on the length scale Uoo/w, with the nondimensional nose radius S = o:rn/Uoo

assumed to be O(1). Hence, anticipating the viscous analysis, it is convenient to also

express the potential flow solution in the local leading-edge region in terms of coordi-

nates nondimensionalized by Uoo/oJ. Since rn << A, the unsteady component of the

potential flow in the local leading-edge region is incompressible and consists of a sum



- 14-

unsteadyresponsein the boundarylayer, leading to high values of leading-edge

receptivity. Equations (3) provide the outer boundary conditions for both our

Navier-Stokes computations and our asymptotic analysis of leading-edge receptivity.

We now turn to the asymptotic analysis of the viscous motion in the boundary

layer. As discussed above, the analysis of the viscous motion involves two distinct

streamwise regions, the LUBLE region near the leading edge in which o_x/Uoo = O(1),

and the OSE region farther downstream in which _ox/Uoo = O(_-2), where ¢ =

(_ov/Uoo2) x/6 is the small parameter in the asymptotic analysis. The asymptotic struc-

ture of the unsteady viscous motion is illustrated in Figure 1.

The viscous analysis is most conveniently developed in a parabolic coordinates,

defined by

Uoo 1 Uoo
x = (_2__2) and y = _ (4a, b)_o 2 _o '

where x and y are Cartesian coordinates in the streamwise and cross-stream direc-

tions, respectively. We have nondimensionalized the physical coordinates (x,y) by

Uoo/_o, so that the LUBLE region corresponds to _ = O(1) and the body surface is

given by _ = S x/2. To thoroughly investigate the effect of nose bluntness, the analysis

is developed for the case S = O(1). The viscous motion in the boundary layer is

driven by the unsteady slip velocity associated with (3). Expressing (3) in parabolic

coordinates and setting I_= S x/2, the unsteady slip velocity is given by

Pac _ 2e itr]4 Oac l }ust ffi pc l, _ sin 2 _ + cOSOac _ e -i'* (5)

It can be seen from this expression that the nose radius of the parabola limits the peak

velocity associated with the strong asymmetric flow due to obfiquely incident acoustic

waves.
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Since the thickness of the mean boundary layer is of the order of the square

root of the Reynolds number, we introduce a boundary layer coordinate 77where

= S 1/2 + e3tl. (6a, b)

Separating the streamfunction into a steady flow component q(_,r_) and an unsteady

disturbance _,J(_,o)e-iwt , and linearizing the equation for $, the unsteady flow in the

boundary layer is found to satisfy the linearized unsteady boundary layer equation

(LUBLE)

(7)

where H: ffi _: + S arises from the Jacobian of the transformation from Cartesian to

parabolic coordinates. The right hand side of this equation is the unsteady pressure

gradient impressed on the boundary layer by the unsteady potential flow. At t/= 0,

and Xb,_are zero, and _,7 must match with the inviscid slip velocity as r/_ oo.

For _ = O(1), solutions for 9 and _b can be found only by using numerical

methods, which we shall discuss in due course. However, for large values of _ well

downstream of the nose, an asymptotic solution for (7) can be derived. This asymp-

totic solution consists of a Stokes wave which is related to the inviscid forcing field,

plus an infinite set of asymptotic eigensolutions. The first asymptotic eigensolution is

the precursor of the "IS wave, and thus is of fundamental importance in the theory of

leading edge receptivity.

In calculating the asymptotic eigensolutions of (7), we utilize Van Dyke's is

result for the mean boundary layer far downstream on the surface of a parabola in a

uniform stream. He found that the streamfunction for the mean flow has the expan-

sion
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whereA t and B 1 are numerical constants, F is the Blasius function and f satisfies a

prescribed ordinary differential equation. This expansion shows that, far downstream,

the boundary layer on a parabola approaches that for a flat plate. Physically, the term

involving B 1 represents a slight shift in the effective origin for this flat plate.

Utilizing (8) for the mean flow description, we develop an asymptotic solution

of the LUBLE (7) for _ >> 1. The most important feature of this solution is the first

asymptotic eigensolution. The asymptotic eigensolution has a two-layer structure in

the direction normal to the surface. The inner layer corresponds to r/= O(_-t), while

the the outer layer has the same thickness as the mean boundary layer, i? -- O(1). In

analyzing the inner layer, it proves convenient to introduce a modified transverse

coordinate m = _r/(l + S/2_2). The use of this coordinate simplifies the solution by

taking partial account of the parabolic geometry. In the inner layer, the expression

for the first asymptotic eigensolution has the form

where

¢ = Cl(S ) _2, e-T(_) [Po(m) + _-3 px(m ) , ...] (9a)

3U o 1 + 3A I _ln(S/_ 2) + 3 -B 1+2A 1 (9b)

and U o denotes U'(O). Equation (9) generalizes Lain and Rott's 4 asymptotic eigensolu-

tion for the flat plate to the case of a parabolic cylinder. The constant ,X in (9b) is a

(real) eigenvalue entering the governing equation for Po(m). The leading edge blunt-

hess has produced logarithmic terms in the exponent T(_). The value of r, a numeri-

cal constant, is fixed by the solvability condition for p_(m), the second term in (9a).

This gives
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f l tr = rs= o + 2U'oT- 1 - _ _oo mw zdra (lOa)

where rs= o is the value for the flat plate case and w(m) = po'(m) is expressible in

terms of an Airy function. Thus, in the exponent r, the leading edge bluntness

produces an order-one change to the flat plate result. Goldstein 5 calculated the flat-

plate value rs= o = -0.69. Evaluating (lOa), r has the complex value

r = -0.69 - $0.51(1 - i) (10b)

for the case of a parabolic leading edge. The imaginary part of r is allied to the

appearance of logarithmic terms in T(_). Physically, the imaginary component of r is

equivalent to a logarithmic term in the phase of the asymptotic eigensolution.

The coefficient C 1 multiplying the asymptotic eigensolution in (9) is arbitrary

within the asymptotic analysis, and hence must be found from a numerical solution of

the LUBLE. This is discussed below. In general, C 1 is a function of the nondimen-

sional nose radius S and of the specific free-stream disturbance.

The coordinate transformation (4a) shows that distancedownstream is propor-

tional to _2. Hence, the cubic term in (9b) implies that the wavelength of the asymp-

totic eigensolution is proportional to x-l� 2. As the wavelength decreases with distance

downstream, the pressure fluctuations induced by the unsteady displacement thickness

of the asymptotic eigensolution increase in importance. When _ ffi O(e-x), this self-

induced pressure gradient exerts an order-one influence on the unsteady motion.

Since the two-layer solution (9) ignores this pressure field, it becomes invalid in this

region. Therefore, the two-layer solution must be replaced by a new asymptotic

solution. This new solution turns out to be the high Reynolds number, small wave-

number asymptotic expansion for the Orr-Sommeffeld equation (OSE). This asymp-

totic expansion corresponds to a triple-deck structure, in which the two layers of the
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previous solution are supplemented by a third layer just outside the mean boundary

layer. This third layer is the potential flow which enters the interactive pressure-

displacement relation.

Anticipating the asymptotic matching of the LUBLE and OSE regions, the "IS

wave in the OSE region has the expansion

IS'i
_b = ¢-2r A(_t ) "/(T/,¢) exp _ _ _(_1,c) d_ (11)

where _1 = _ = O(1), r is given by (10), A(_I) is a slowly varying amplitude, _t is the

mode shape and • is the complex wavenumber. With suitable changes in the defini-

tion of the wavenumber a, phase speed c and Reynolds number R, the OSE for the

parabolic geometry can be reduced to the standard form for the flat plate. Specifi-

cally, we set

and

[ .'] [ .']= _s=o l+S¢-_- , c = cs=o l+S_ ,

[ "]cxR = (otR)s=o 1 + S _---_'1 " (12a, b,c)

Here the subscript S=0 refers to the appropriate values for the flat plate case.

At first sight these corrections would appear to have little effect on the form of

the "IS wave structure, beyond modifying the slow spatial variation of the wave amp-

litude. However, a careful analysis of the modified equation demonstrates that the

standard results of the triple-deck theory for the flat plate case are not directly appli-

cable. The mean flow pressure gradient leads to a crucial difference in the boundary

layer profile close to the body surface, namely U"(O) ,/, O. Thus the complex wave-

number obtained by Goldstein: for "IS waves on a flat plate can not be readily

modified to the parabofic geometry. However using similar methods, we have



- 19-

obtained the following expansion of the wavenumber for the parabolic cylinder,

_1) = [go+egl+e2g2] + S[e21ne_L,2+'z_2] + O(':ln'), (13a)

with the e2 In _ term arising due to the first perturbation term in (9b). The functions

%, gx and g2 are the flat plate values given by Goldstein 2. The first two terms gener-

ated by the parabolic geometry are given by

and

where

[ _3]e -isf/4 2A1 1 9 _x

_L,2 ffi _-'_- ¢,,--5g--_-I IU o 2 YH'(Y)

+" ' t{t= yz/, _ Bx+Alln(_/S)j 1 9 "_1
]

2 YH'(Y)I

(13b)

H(z) = ei6'r/2 z2 Ai'(z) (13d)
'Z •

f: Ai(z ) dz"

In these expressions, Yis defined by H(Y) = _a1 where _x = _x/Uo and A1 and B1 are the

numerical constants appearing in (8). It is interesting to note that the O(_' In e) cor-

rection due to the parabolic geometry precedes the first correction due to nonparallel

flow effects which is O(e_) in Smith's 3 flat plate theory.

The higher order terms for _ have also been determined, up to the _a term

which also determines the slowly varying amplitude function A(_x). This solution in

the triple-layer region has been rigorously matched back to the asymptotic expansion

(9a) for the LUBLE. This matching shows that the coefficient Cx in (9a) determines

the amplitude of the "IS wave, and hence is the "Receptivity Coefficient." The further

development of the "IS wave with distance downstream over the parabolic cylinder, as

described in (13), is not central to understanding the actual recepti'vity process.

-4 a,.I
+ r.'(r j }
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However, the detailed effect of the parabolic geometry on the "IS wave must be fully

determined in order to allow comparison with the ongoing numerical investigation of

Dr. Gatski.

As an illustration of these effects, Figures 2 and 3 show preliminary compari-

sons between the TS wavenumbers for a parabolic cylinder with S = 1 and for a flat

plate, with _ - 0.I in both cases. The normalized coordinate _i has absorbed some of

the effects of the parabolic geometry, and hence the neutral stability points for the

two cases in Figure 3 are not markedly different. However, the favorable pressure

gradient over the parabolic cylinder modifies both the wavelength and the growth rate

of the instability wave. The favorable pressure gradient decreases Re(_;), correspond=

ing to an increase in the TS wavelength (Figure 2), and further stabilizes the boundary

layer, as is evident from the growth rates plotted in Figure 3.

At small _i, the asymptotic results plotted in these figures become invalid as the

region governed by the LUBLE (7) is approached and geometric effects become

dominant. The lower limit _ = 0.I corresponds to _ -_ 1.6 which is well within the

region of significant wall curvature.

To determine the Receptivity Coefficient C I, a numerical solution of the

LUBLE for the particular free-stream disturbance of interest is required. Essentially,

the numerical solution of the LUBLE for ( >> I is compared with the expression (9a)

for the first asymptotic eigensolution. We are now beginning to address this task, and

are considering the merits of various numerical schemes. An important aspect of our

approach is to utilize our knowledge of the analytical structure of the large _ behavior.

A critical feature of the problem is that for real co and (, the first asymptotic eigenso=

lution makes only an exponentially small contribution at large _. Thus, for real _, it

would be extremely difficult to determine C I from a direct comparison of the numer=

ical and asymptotic results. However, the LUBLE is analytic in _, and hence we

extend the problem into the complex ( plane and calculate the numerical solution
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along a ray where the first asymptotic eigensolution is dominant. As in previous work

by the author, we shall analytically factor out the now rapidly growing exponential

factor e-T(f.) of the first asymptotic eigensolution before discretizing the problem.

We anticipate that the development of a computer program to solve the LUBLE

and extract the receptivity coefficient will take only a few months. By the time of

the ICASE/LaRC workshop this summer, we should be well along in a parametric

study based on our asymptotic theory. During the workshop we plan to make exten-

sive comparisons of our asymptotic results with the numerical results generated by Dr.

Gatski's Navier-Stokes code.

Concluding Remarks

In the first year of this research program, significant progress has been made on

both the asymptotic theory and the collaborative Navier-Stokes computations of

leading-edge receptivity. This project complements the NASA LaRC in-house

activity on boundary-layer receptivity, which is focused mainly on localized rather

than leading-edge mechanisms and involves the author's ex-student, Dr. M. Choud-

hari. We have developed a strong, mutually beneficial collaboration with Dr. Gatski

in Navier-Stokes computations, and foresee additional opoortunides for collaboration

with other NASA computational fluid dynamicists. In particular, the author and Dr.

C. Streett recently discussed possible interactions on spectral calculations of leading-

edge receptivity, and we plan to explore this further during the ICASE/LaRC

workshop this summer. Additional opportunities for collaborative activity would arise

in the second phase of this research program, which extends the investigation to

supersonic Mach numbers.

This project involves subtle physical mechanisms and sophisticated mathemati-

cal techniques, as can be seen from the above discussion of our progress on the
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asymptotictheory. The significant background work in this area has been performed

by outstanding senior researchers such as M.E. Goldstein and F.T. Smith. Thus, when

the author proposed this project, he emphasized the importance of utilizing a Post

Doctoral student. It would be quite difficult for a beginning graduate student to work

through the relevant background literature, and even harder for him to understand

how these analyses could be significantly extended. Indeed, if this project was

attempted with a beginning Ph.D. student, the author would anticipate very little

progress for at least a couple of years. The low Math number study alone would be

appropriate for a three (or four!) year Ph.D. project.

The argument is sometimes advanced that projects involving graduate students

are preferable due to their educational component. Post Doctoral studies also have a

strong educational component and in fact are becoming increasingly important for in-

dividuals seeking an academic position at a first-rate university. The education

provided by Post Doctoral study is equally valuable for future positions in government

or private research laboratories. An alternative viewpoint is that the choice of a

Master's, Ph.D. or Post Doctoral student should be based on the difficulty of the

project. In all three cases, the project contributes to the education of the student and

to his future career development.

In summary, at this time our research on leading-edge receptivity is definitely

on schedule, and possibly ahead of schedule. The asymptotic theory for the case of a

symmetric, low Math number mean flow is nearly complete. The only remaining task

is the development of a computer program to solve the LUBLE and extract the recep-

tivity coefficient C x. The computer programming should take only a couple of

months. During the ICASE/LaRC workshop this summer, we shall utilize the asymp-

totic theory to perform a parametric study of the influence of nose bluntness on

leading-edge receptivity for low Math number flows. Extensive comparisons of the

asymptotic results and Dr. C-atski's Navier-Stokes simulations will also be carried out

during the workshop.
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FIGURE 1. The asymptotic structure for the unsteady disturbances in the boundary layer

of a parabolic cylinder.
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FIGURE 2. Variation of the real part of the TS wavenumber (multiplied by e) as a function

2 lof the downstream distance (Re(s) vs. _ -- (_1/_') 2) for e =- (wv/Uoo)-_ -- 0.1. The

flat plate result is compared to that for a parabolic surface with s =_ wr,_/Uoo = 1.0, where

r_, is the nose radius.



-26-

0°41 °

0.2

........r.

PoroboL_c CyLi.nder - s°l
o,,01,WWW,n,,,,W,,HIH,,,W,V,I DH,,,| H00000aWH,,,00,,DJHnH,

-0.41-

....... l'o" ........ i'o'
Square(NormaLLsed PoroboL_.c CoordLnote)

FIGURE 3. Variation of the growth rate of the TS wave (multiplied by e) as a function

of the downstream distance (-Im(_) vs. _ = (_l/U0')2). Flat plate results are compared

with those for a parabolic cylinder with s = 1. The stabilising effect of the favourable

pressure gradient can be seen, this effect decreasing with distance downstream as the body

curvature approaches zero.


